Distribution of ranks of elliptic curves

Izzy Rendell

LSGNT
18th April 2023

Rank of an elliptic curve

Let E be an elliptic curve, then by Mordell-Weil:

$$
E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}
$$

$r=0$ means no rational solutions exist, $r>0$ means infinitely many rational solutions exist.

Birch and Swinnerton-Dyer Conjecture

The Taylor expansion of $L(E, s)$ at $s=1$ has the form

$$
L(E, s)=c(s-1)^{r}+\text { higher order terms }
$$

with $c \neq 0$ and $r=\operatorname{rank}(E(\mathbb{Q}))$.
Consequence: $L(E, 1)=0$ if and only if $E(\mathbb{Q})$ is infinite.
A Smith: uses matrix determinants to find the rank of $E^{(n)}$ where

$$
E^{(n)}: y^{2}=x^{3}-n^{2} x
$$

and $n \equiv 5,6,7 \bmod 8$ is a positive squarefree integer.

Congruent Number Problem

Congruent number definition

A positive integer n is called a congruent number if there exists a right-angle triangle with rational sides such that n is the area of the triangle.

$$
a, b, c \in \mathbb{Q}, \quad \frac{1}{2} a b=n, \quad a^{2}+b^{2}=c^{2} .
$$

Congruent Number Problem: which positive integers n are congruent?

Some results for CNP

- 6 is a congruent number, $30(5,12,13)$ and $60(8,15,17)$ are also congruent

- 1 is not a congruent number - infinite descent
- $r^{2} s$ is congruent if and only if s is congruent, $r, s \in \mathbb{N}$
- $p \equiv 3$ (8), p is not congruent but $2 p$ is
- $p \equiv 5$ (8), p is congruent
- $p \equiv 7$ (8), $p, 2 p$ are congruent
- Tunnell's Theorem and BSD give algorithm with finite steps

Relation to Elliptic Curves

There is a bijection between the following sets:

$$
\begin{gathered}
\left\{(a, b, c) \in \mathbb{Q}^{3} \left\lvert\, \frac{1}{2} a b=n\right., a^{2}+b^{2}=c^{2}, a, b, c \neq 0\right\} \\
\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}-n^{2} x, y \neq 0\right\}
\end{gathered}
$$

It turns out that $E^{(n)}(\mathbb{Q})_{\text {tors }}=\{\mathcal{O},(0,0),(n, 0),(-n, 0)\}$, and we know that

$$
E^{(n)}(\mathbb{Q}) \cong E^{(n)}(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}
$$

Congruent Number Problem (alternative version): n is a congruent number if and only if the rank of $E^{(n)}$ over \mathbb{Q} is positive.

Matrix construction - Legendre symbols

Let the odd part of n be written $p_{1} \ldots p_{r}$. Define the additive Legendre symbol

$$
\begin{gathered}
\left(\frac{d}{p}\right)_{+}:=\frac{1}{2}\left(1-\left(\frac{d}{p}\right)\right) \\
y_{i}:=\left(\frac{-1}{p_{i}}\right)_{+} \mathbf{y}:=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{r}
\end{array}\right), \quad z_{i}:=\left(\frac{2}{p_{i}}\right)_{+} \quad \mathbf{z}:=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{r}
\end{array}\right) \\
A_{i j}:= \begin{cases}\left(\frac{p_{j}}{p_{i}}\right)_{+} & \text {for } i \neq j \\
\sum_{\substack{k=1 \\
k \neq i}} A_{i k} & \text { for } i=j .\end{cases}
\end{gathered}
$$

Example

$n=30=2 \cdot 3 \cdot 5, n \equiv 6 \bmod 8 . p_{1}=3$ and $p_{2}=5$.
$A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), \quad \mathbf{y}=\binom{1}{0}, \quad \mathbf{z}=\binom{1}{1}$,

$$
M_{6}=\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Therefore $\operatorname{det}\left(M_{6}\right)=1$, and so $\operatorname{rank}\left(E^{(30)}\right)=1>0$ (as expected).

Significance of \mathscr{L}_{x}

Sums $\mathscr{L}_{x}(n)$ defined using a recursive function, definition varies depending on $n \bmod 8$.

Theorem (Tian, Yuan, Zhang.)

Let n be a positive squarefree integer. If $n \equiv x(8)$ for $x \in\{5,6,7\}$, then the analytic rank of $E^{(n)}$ is exactly one if $\mathscr{L}_{x}(n)$ is nonzero.

A Smith: calculated matrices M_{x} such that $\mathscr{L}_{X}=\operatorname{det}\left(M_{x}\right)$.

Theorem

- Of the positive squarefree integers equal to $5 \bmod 8$, at least 62.9% are congruent numbers. Same holds for $n \equiv 7 \bmod 8$.
- Of the positive squarefree integers equal to $6 \bmod 8$, at least 41.9% are congruent numbers.

Motivation - matrices using Legendre symbols

Monsky: the rank of the 2-Selmer group of $E^{(n)}$ can be determined as the corank of a matrix over \mathbb{F}_{2} determined by $n \bmod 2$ and Legendre symbols

Tian, Yuan, Zhang: parity of $\mathscr{L}\left(E^{(n)}\right)$ can be determined by same Legendre symbols, where

$$
\mathscr{L}(E)=\frac{L(E, 1) \cdot\left|E_{\text {tors }}\right|^{2}}{\Omega(E) \prod_{p \mid 2 N} c_{p}(E)}
$$

where c_{p} are Tamagawa factors and $\Omega(E)$ is the least positive real period of E.

BSD implies $\mathscr{L}(E)=|\operatorname{Sha}(E)|$.

Matrix properties - coranks

To use T-Y-Z Theorem in terms of density, need to calculate how often $\mathscr{L}_{x}(n) \neq 0$, for $n \equiv 5,6,7$ (8).

Corank definition

If M is an $m \times n$ matrix, and M has rank r, then its corank is $m-r$.

We have

$$
\operatorname{corank}(M)=0 \text { and } \operatorname{rank}(M)=m \text { if and only if } \operatorname{det}\left(M_{x}\right) \neq 0
$$

Aim: adapt this type of method for other families of elliptic curves.

