Distribution of ranks of elliptic curves

Izzy Rendell

LSGNT

18th April 2023

Izzy Rendell (LSGNT)

Distribution of ranks of elliptic curves

18th April 2023

< 行

< ∃⇒

э

Rank of an elliptic curve

Let E be an elliptic curve, then by Mordell-Weil:

$$E(\mathbb{Q})\cong E(\mathbb{Q})_{tors} imes \mathbb{Z}^r$$

r = 0 means no rational solutions exist, r > 0 means infinitely many rational solutions exist.

Birch and Swinnerton-Dyer Conjecture

The Taylor expansion of L(E, s) at s = 1 has the form

 $L(E, s) = c(s-1)^r + higher order terms$

with $c \neq 0$ and $r = rank(E(\mathbb{Q}))$.

Consequence: L(E, 1) = 0 if and only if $E(\mathbb{Q})$ is infinite. **A Smith**: uses matrix determinants to find the rank of $E^{(n)}$ where

$$E^{(n)}: y^2 = x^3 - n^2 x$$

and $n \equiv 5, 6, 7 \mod 8$ is a positive squarefree integer.

Congruent Number Problem

Congruent number definition

A positive integer n is called a congruent number if there exists a right-angle triangle with rational sides such that n is the area of the triangle.

Congruent Number Problem: which positive integers *n* are congruent?

			 0 / 10
Izzy Rendell (LSGNT)	Distribution of ranks of elliptic curves	18th April 2023	3/10

Some results for CNP

• 6 is a congruent number, 30 (5, 12, 13) and 60 (8, 15, 17) are also congruent

- 1 is not a congruent number infinite descent
- r^2s is congruent if and only if s is congruent, $r, s \in \mathbb{N}$
- $p \equiv 3$ (8), p is not congruent but 2p is
- $p \equiv 5$ (8), p is congruent
- $p \equiv 7$ (8), p, 2p are congruent
- Tunnell's Theorem and BSD give algorithm with finite steps

Relation to Elliptic Curves

There is a bijection between the following sets:

$$\{(a, b, c) \in \mathbb{Q}^3 \mid \frac{1}{2}ab = n, a^2 + b^2 = c^2, a, b, c \neq 0\},\$$

$$\{(x,y) \in \mathbb{Q}^2 \mid y^2 = x^3 - n^2 x, y \neq 0\}.$$

It turns out that $E^{(n)}(\mathbb{Q})_{tors} = \{\mathcal{O}, (0,0), (n,0), (-n,0)\}$, and we know that

$$E^{(n)}(\mathbb{Q})\cong E^{(n)}(\mathbb{Q})_{tors}\times\mathbb{Z}^r.$$

Congruent Number Problem (alternative version): *n* is a congruent number if and only if the rank of $E^{(n)}$ over \mathbb{Q} is positive.

Matrix construction - Legendre symbols

Let the odd part of *n* be written $p_1...p_r$. Define the additive Legendre symbol

$$\begin{pmatrix} \frac{d}{p} \\ _{+} \coloneqq \frac{1}{2} \left(1 - \left(\frac{d}{p} \right) \right) \\ y_{i} \coloneqq \left(\frac{-1}{p_{i}} \right)_{+} \quad \mathbf{y} \coloneqq \begin{pmatrix} y_{1} \\ \vdots \\ y_{r} \end{pmatrix}, \quad z_{i} \coloneqq \left(\frac{2}{p_{i}} \right)_{+} \quad \mathbf{z} \coloneqq \begin{pmatrix} z_{1} \\ \vdots \\ z_{r} \end{pmatrix} \\ A_{ij} \coloneqq \begin{cases} \left(\frac{p_{i}}{p_{i}} \right)_{+} & \text{for } i \neq j \\ \sum \\ \sum \\ k \neq i \\ k \neq i} \end{cases} \quad \text{for } i = j.$$

3

Example

$$n = 30 = 2 \cdot 3 \cdot 5, \ n \equiv 6 \mod 8. \ p_1 = 3 \text{ and } p_2 = 5.$$
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad \mathbf{y} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \mathbf{z} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$
$$M_6 = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Therefore $det(M_6) = 1$, and so $rank(E^{(30)}) = 1 > 0$ (as expected).

イロト 不得 トイヨト イヨト

э

Significance of \mathscr{L}_x

Sums $\mathscr{L}_{x}(n)$ defined using a recursive function, definition varies depending on *n* mod 8.

Theorem (Tian, Yuan, Zhang.)

Let *n* be a positive squarefree integer. If $n \equiv x$ (8) for $x \in \{5, 6, 7\}$, then the analytic rank of $E^{(n)}$ is exactly one if $\mathscr{L}_x(n)$ is nonzero.

A Smith: calculated matrices M_x such that $\mathscr{L}_x = det(M_x)$.

Theorem

- Of the positive squarefree integers equal to 5 mod 8, at least 62.9 % are congruent numbers. Same holds for n ≡ 7 mod 8.
- Of the positive squarefree integers equal to 6 mod 8, at least 41.9 % are congruent numbers.

イロト 不得 トイヨト イヨト

Motivation - matrices using Legendre symbols

Monsky: the rank of the 2-Selmer group of $E^{(n)}$ can be determined as the corank of a matrix over \mathbb{F}_2 determined by $n \mod 2$ and Legendre symbols

Tian, Yuan, Zhang: parity of $\mathscr{L}(E^{(n)})$ can be determined by same Legendre symbols, where

$$\mathscr{L}(E) = \frac{L(E,1) \cdot |E_{tors}|^2}{\Omega(E) \prod_{\rho \mid 2N} c_{\rho}(E)},$$

where c_p are Tamagawa factors and $\Omega(E)$ is the least positive real period of E.

BSD implies $\mathscr{L}(E) = |Sha(E)|$.

Matrix properties - coranks

To use T-Y-Z Theorem in terms of density, need to calculate how often $\mathscr{L}_{x}(n) \neq 0$, for $n \equiv 5, 6, 7$ (8).

Corank definition

If M is an $m \times n$ matrix, and M has rank r, then its corank is m - r.

We have

corank(M) = 0 and rank(M) = m if and only if $det(M_x) \neq 0$.

Aim: adapt this type of method for other families of elliptic curves.

< □ > < □ > < □ > < □ > < □ > < □ >